Course Code: 328356(28)

Mr. Manjeet Singh Sonwani Assistant Professor Department of Electronics & Telecomm. Government Engineering College Raipur

Course Contents

UNIT-I NUMBER SYSTEMS, CODES AND BOOLEAN ALGEBRA

UNIT-II MINIMIZATIONTECHNIQUES

UNIT-III COMBINATIONAL CIRCUITS

UNIT-IV SEQUENTIAL CIRCUITS

UNIT-V DIGITAL LOGIC FAMILIES

Text Books:

- 1. Fundamentals of Digital Circuits: A. Anand Kumar, PHI.(Unit I to V)
- 2. Digital Electronics-Principles and Integrated Circuits, A.K. Maini, 1st Edition, Wiley India.

Reference Books:

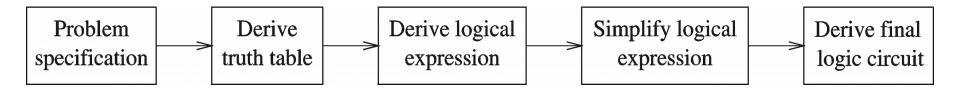
- 1. Digital Fundamentals: Floyd & Jain: Pearson Education.
- 2. Digital Electronics: A. P. Malvino: Tata McGraw Hill. 3. Digital Circuits & Logic Design-LEE, PHI.

NIT-I MINIMIZATIONTECHNIQUES

- Expansion of a Boolean expression to SOP form
- Expansion of a Boolean expression to POS form
- Two, Three & Four variable K-Map: Mapping and minimization of SOP and POS expressions
- Completely and Incompletely Specified Functions-Concept of Don't Care Terms
- Quine McClusky Method (Up to 5 variable)
- Synthesis using AND-OR, NAND-NOR and XOR forms; Design Examples;
- Programmable Logic Devices: PAL, PLA's & PROMS.

Logic Circuit Design Process

- A simple logic design process involves
 - Problem specification
 - Truth table derivation
 - Derivation of logical expression
 - Simplification of logical expression
 - Implementation



Deriving Logical Expressions

Derivation of logical expressions from truth tables

- sum-of-products (SOP) form
- product-of-sums (POS) form
- SOP form
 - Write an AND term for each input combination that produces a 1 output
 - Write the variable if its value is 1; complement otherwise
 - OR the AND terms to get the final expression
- POS form
 - Dual of the SOP form

Deriving Logical Expressions (cont.)

 3-input majority function

Α	В	С	F
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

- SOP logical expression
- Four product terms
 - Because there are 4 rows with a 1 output

$$= \overline{A} B C + \overline{A} B C + A B C + A B C + A B C + A B C + A B C$$

Deriving Logical Expressions (cont.)

 3-input majority function

	n		
Α	B	С	F
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

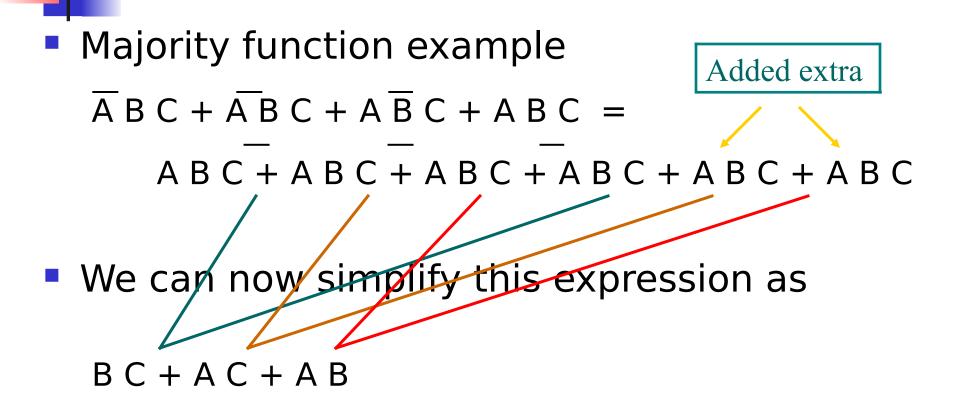
- POS logical expression
- Four sum terms
 - Because there are 4 rows with a 0 output

 $F = (A + \underline{B} + C) (\underline{A} + B + C)$ (A + B + C) (A + B + C)

Logical Expression Simplification

- Algebraic manipulation
 - Use Boolean laws to simplify the expression
 - Difficult to use
 - Don't know if you have the simplified form

Algebraic Manipulation



A difficult method to use for complex expressions

Implementation Using NAND Gates

- Using NAND gates
 - Get an equivalent expression

$$AB + CD = AB + CD$$

Using de Morgan's law

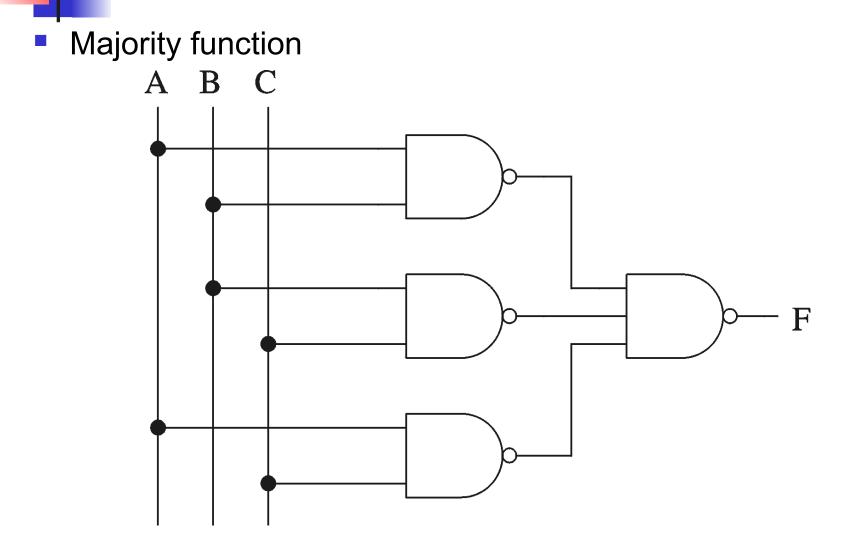
$$A B + C D = A B \cdot C D$$

- Can be generalized
 - Majority function

$A B + B C + AC = A B \cdot BC \cdot AC$

Idea: NAND Gates: Sum-of-Products, NOR Gates: Product-of-Sums

Implementation Using NAND Gates (cont.)



Minimization procedure

- 1.Draw the K-map with 2ⁿ cells, where n is the number of variables in a Boolean function.
- 2.Fill in the K-map with 1s and 0s as per the function given in the algebraic form (SOP or POS) or truth-table form.
- 3. Determine the set of prime implicants that consist of all the essential prime implicants as per the criteria: All the 1-entered or 0-entered cells are covered by a set of implicants, while making the number of cells covered by each implicant as large as possible. Eliminate the redundant implicants. Identify all the essential prime implicants. Whenever there is a choice among the prime implicants select the prime implicant with the smaller number of literals.

Minimization procedure

- 4. If the final expression is to be generated in SOP form, the prime implicants should be identified by suitably grouping the positionally adjacent 1- entered cells, and converting each of the prime implicant into a product term. The final SOP expression is the OR of all the product terms.
- 5. If the final simplified expression is to be given in the POS form, the prime implicants should be identified by suitably grouping the positionally adjacent 0-entered cells, and converting each of the prime implicant into a sum term. The final POS expression is the AND of all sum terms.

Common Terms for 2-Level Minimization

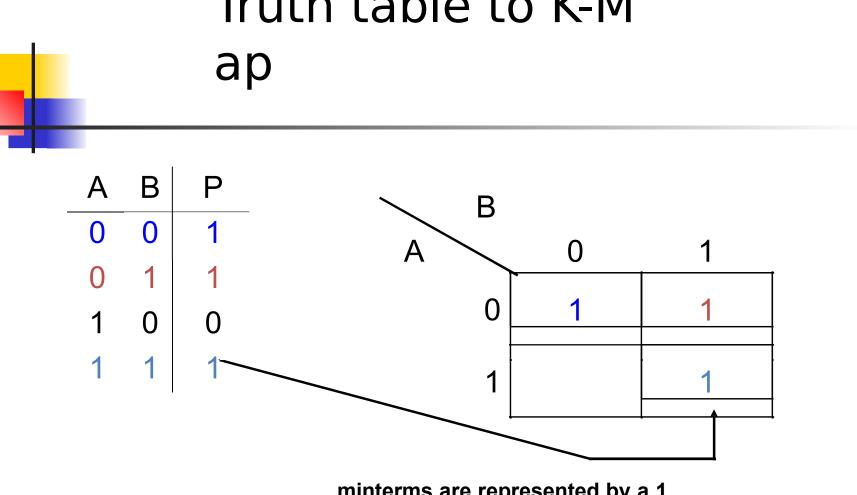
- Literal A variable in complemented or uncomplemented form
- Product The disjunction (AND) of a set of literals; also represents a cube
- Support Set Set of all variables that define the domain of a switching function
- Minterm A disjunction (AND) containing an instance of each literal corresponding to a variable in the support set that is in the on-set, *fon*, of a function
- Don't Care The absence of a supporting variable in a product term
- Implicant A product term that covers one or more minterms in the onset, *f*^{on}, of a function
- Prime Implicant An implicant in the on-set, *fon*, of a function such that it is not a subproduct of any other possible implicant in the set.
- Essential Prime Implicant A prime implicant that covers at least one minterm NOT covered by any other implicant in the on-set, fon.

Minimizatio n

- Minimization can be done usi ng
 - To combine ter ms

$$B^{-}C + B C = B(^{-}C + C) = B$$

- Or equivale
- **Visit**al identification of terms that
- tear the up mained



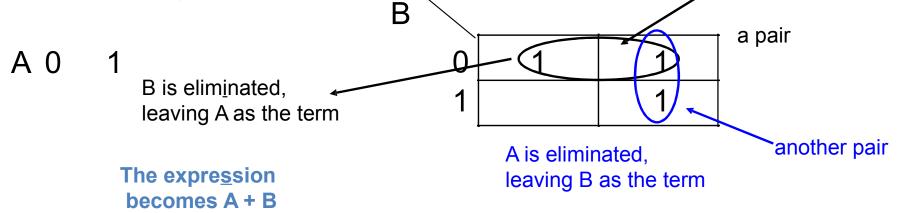
The expression is:

minterms are represented by a 1 in the corresponding location in the K map.

 $\overline{A}.\overline{B} + \overline{A}.B + A.B$

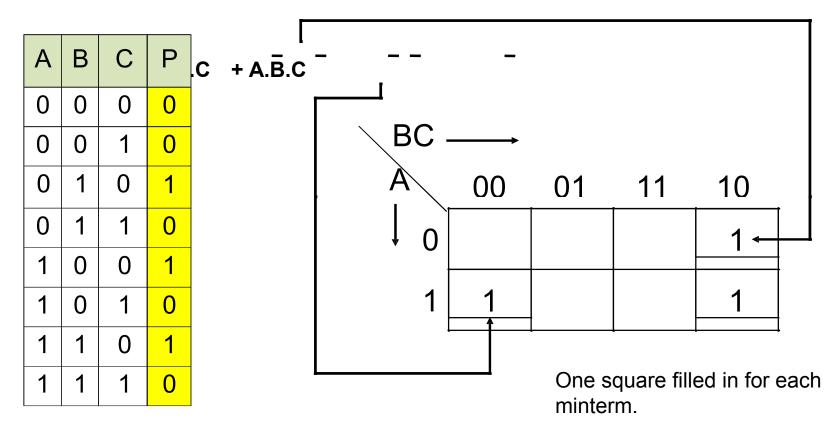
К-Мар

- Adjacent 1's can be "paired off"
- Any variable which is both a 1 and a zero in this pairing can be eliminated
- Pairs may be adjacent horizontally or vertically

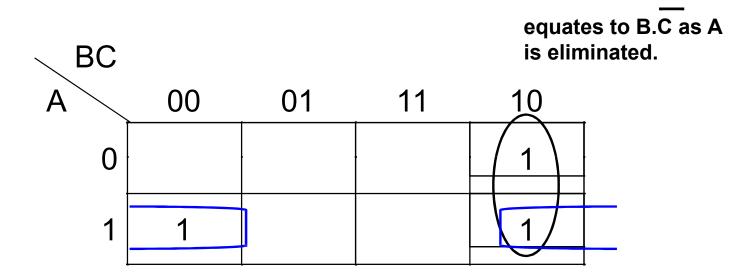


An examp le

Two Variable K-Map



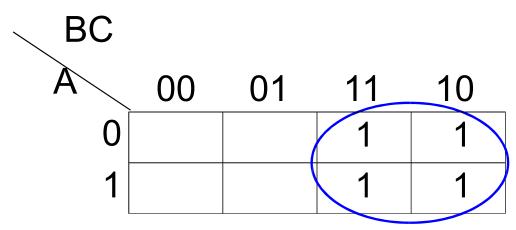
Grouping the Pai rs



Ou<u>r</u> truth<u>t</u>able simplifies to A.C + B.C Here, we can "wrap around" and this pair equates to A.C as B is eliminated.

Groups of 4

Groups of 4 in a block can be used to eliminate two variables:

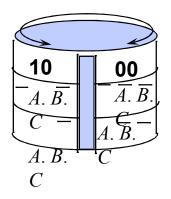


The solution is B because it is a 1 over the whole block (vertical pairs) = BC + BC = B(C + C) = B.

Karnaugh M aps

Three Variable K-M

a	BC A	00	01	11	10		
	0	<i>A.B.C</i>	$\overline{A.} B. C$	- <i>A. B. C</i>	\overline{A} . B.		
	1		_		$\begin{array}{c} C \\ A \\ R \end{array}$		



• Extreme ends of same row are *adja cent*

The Block of 4, ag ain

BC A	00	01	11	10		
0	1			1		
1	1			1		

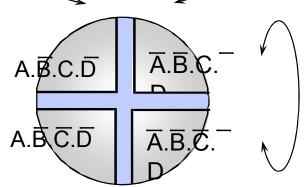
$$X = \overline{C}$$

4-variable Karnaugh M aps

• Four Variable K-M

CD 00 01 11 10
$\begin{array}{c c} 00 & \overline{\mathbf{A}}.\overline{\mathbf{B}}.\overline{\mathbf{C}}.\mathbf{D} & \overline{\mathbf{A}}.\overline{\mathbf{B}}.\mathbf{C}. & \overline{\mathbf{A}}.\overline{\mathbf{B}}.\mathbf{C}.\mathbf{D} & \overline{\mathbf{A}}.\overline{\mathbf{B}}.\mathbf{C}.\overline{\mathbf{D}} \\ \end{array}$
01 - ^D Ā.B.C.D Ā.B.C.D
11 A.B.C.D A.B.C. A.B.C.D A.B.C.D A.B.C.D A.B.C.D A.B.C.D
10 A.B.C.D A.B.C.D A.B.C.D A.B.C.D

 Four corners adjace nt



Karnaugh Maps

• Four Variable K-Map example

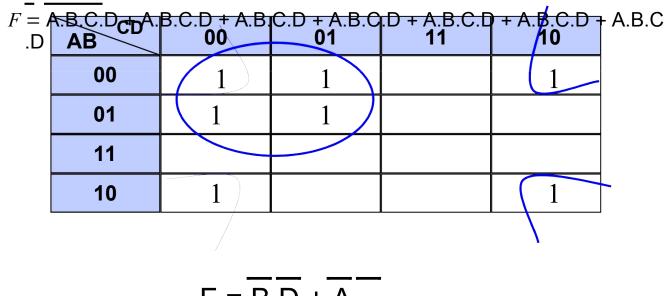
 $F = \overline{A.B.C.D} + \overline{A.B.C.D}$

AB	00	01	11	10
00				
01				
11				
10				

F =

Karnaugh Ma ps

•_Four <u>Variable K-Map solution</u>_



Incompletely specified functions

- All Boolean functions are not always completely specified Consider the BCD decoder,
- Only 10 outputs are decoded from 16 possible input combinations.
- The six invalid combinations of the inputs never occur
- We dont-care what the output is for any of these combinations that should never occur
- These dont-care situations can be used advantageously in generating a simpler Boolean expression
- Such dont-care combinations of the variables are represented by an "X" in the appropriate cell of the Kmap

Truth-table and K-map with don't cares Using the three dont care conditions

Α	В	С	F
0	0	0	Х
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	Х
1	1	1	Х

Quine-McClusky

- Map methods unsuitable if the number of variables is more than six
- Quine formulated the concept of tabular minimisation in 1952
- Improved by McClusky in 1956
- Quine-McClusky method :
- Can be performed by hand, but tedious, time-consuming and subject to error
- Better suited to implementation on a digital computer

Principle of Quine-McCusky Method

- Quine-McClusky method is a two stage simplification process
- Step 1: Prime implicants are generated by a special tabulation process
- Step 2: A minimal set of implicants is determined Tabulation
- List the specified minterms for the 1s of a function and dont-cares
- Generate all the prime implicants using logical adjacency (AB/ + AB = A)
- One can work with the equivalent binary number of the product terms.
- Example: A'BCD' and A'BC'D' are entered as 0110 and 0100 Combined to form a term 01-0

Creation of Prime Implicant Table

- Selected prime implicants are combined and arranged in a table
 - Selection of minimal set of implicants
- Determine essential prime implicants These are the minterms not covered by any other prime implicant Identified by columns that have only one asterisk Columns 2 and 14 have only one asterisk each The associated row, CD/, is an essential prime implicant. CD/ is selected as a member of the minimal set (mark it by an asterisk) Remove the corresponding columns, 2, 6, 10, 14, from the prime implicant table A new table is prepared.

Dominating Prime Implicants

- Identified by the rows that have more asterisks than others Choose Row A/BD Includes the minterm 7, which is the only one included in the row represented by A/BC A/BD is dominant implicant over A/BC A/BC can be eliminated Mark A/BD by an asterisk Check off the columns 5 and 7
- Choose AB/D
 Dominates over the row AB/C
 Mark the row AB/D by an asterisk
 Eliminate the row AB/C
 Check off columns 9 and 11 Select
 A/C/D
 Dominates over B/C/D.
 B/C/D also
 dominates over A/C/D
 Either B/C/D or A/C/D can
 be chosen as the dominant prime implicant

Process of simplification

- All columns have two asterisks
- There are no essential prime implicants.
- Choose any one of the prime implicants to start with Start with prime implicant a (mark with asterisk)
- Delete corresponding columns, 0 and 1
- Row c becomes dominant over row b, delete row b
 Delete columns 3 and 7
- Row e dominates row d, and row d can be eliminated
- Delete columns 14 and 15 Choose row g it covers the remaining asterisks associated with rows h and f

STEP 1 - EXAMPLE

 $f \circ m \models \{m_0, m_1, m_2, m_3, m_5, m_8, m_{10}, m_{11}, m_{13}, m_{15}\} = \Sigma (0, 1, 2, 3, 5, 8, 10, 11, 13, 15)$

Minterm		Cu	ıbe			Minterm		Cu	ıbe]	Mintern	n		Cu	be		
0	0	0	0	0	\checkmark	0,1	0	0	0	-	✓	0,1,2,3		0	0	-	-	PI=A
1	0	0	0	1	\checkmark	0,2	0	0	-	0	 ✓ 	0,8,2,10		-	0	-	0	PI=C
2	0	0	1	0	\checkmark	0,8	-	0	0	0	✓	2,3,10,1		-	0	1	-	PI=B
8	1	0	0	0	 ✓ 	1,3	0	0	-	1	 ✓ 							
3	0	0	1	1	\checkmark	1,5	0	-	0	1	PI=D							
5	0	1	0	1	√	2,3	0	0	1	-	\checkmark				tion		an	this
10	1	0	1	0	√	2,10	-	0	1	0	\checkmark							1115
11	1	0	1	1	√	8,10	1	0	-	0	\checkmark				ne			
13	1	1	0	1	√	3,11	-	0	1	1	✓				? H			
15	1	1	1	1	✓	5,13	-	1	0	1	PI=E	/	<mark>mo</mark>	odif	ied	?		
						10,11	1	0	1	-	\checkmark							
						11,15	1	-	1	1	PI=F							
						13,15	1	1	-	1	PI=G							

$$f^{on} = \{A, B, C, D, E, F, G\} = \{00--, -01-, -0-0, 0-01, -101, 1-11, 11-1\}$$

STEP 2 – Construct Cover Table

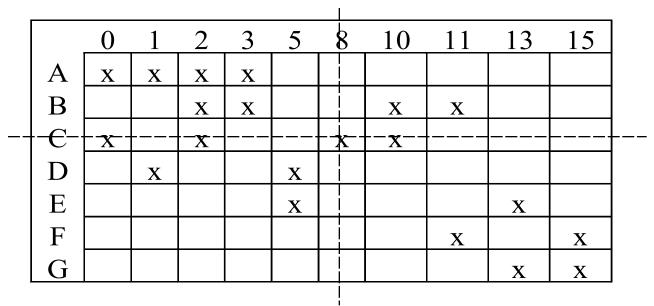
- Pls Along Vertical Axis (in order of # of literals)
- Minterms Along Horizontal Axis

	0	1	2	3	5	8	10	11	13	15
A	X	X	X	X						
В			X	X			X	X		
С	X		X			X	X			
D		X			X					
E					X				X	
F								X		X
G									X	X

NOTE: Table 4.2 in book is incomplete

STEP 2 – Finding the Minimum Cover Extract All Essential Prime Implicants, EPI

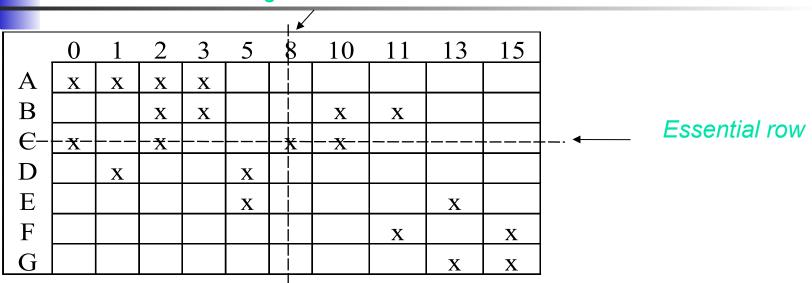
EPIs are the PI for which a Single x Appears in a Column

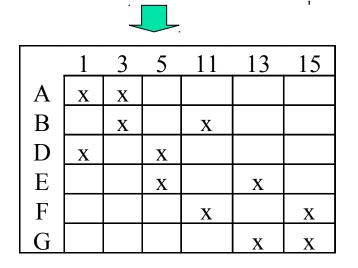


- *C* is an EPI so: *f* ^{on}={*C*, ...}
- Row C and Columns 0, 2, 8, and 10 can be Eliminated Giving Reduced Cover Table
- Examine Reduced Table for New EPIs

STEP 2 – Reduced Table

Distinguished Column





•The Row of an EPI is an *Essential row*

•The Column of the Single x in the *Essential Row* is a *Distinguished Column*

Row and Column Dominance

If Row P has x's Everywhere Row Q Does Then Q Dominates P if P has fewer x's

- If Column *i* has x's Everywhere *j* Does Then *j* Dominates *i* if *i* has fewer x's
- If Row P is equal to Row Q and Row Q does not cost more than Row P, eliminate Row P, or if Row P is dominated by Row Q and Row Q Does not cost more than Row P, eliminate Row P
- If Column *i* is equal to Column *j*, eliminate Column *i* or if Column *i* dominates Column *j*, eliminate Column *i*

STEP 3 – The Reduced Cover Table

Initially, Columns 0, 2, 8 and 10 Removed

	1	3	5	11	13	15
A	X	X				
A B		X		X		
D	X		X			
D E F G			X		X	
F				X		X
G					X	X

- No EPIs are Present
- No Row Dominance Exists
- No Column Dominance Exists
- This is *Cyclic Cover* Table
- Must Solve Exactly OR Use a Heuristic